全国服务咨询热线:

13867128415,18457152660

Products产品中心
首页 > 产品中心 > 高光谱 > 高光谱相机 > 1602高光谱分选机
高光谱分选机
简要描述:

高光谱分选机作原理:通常配备光源、高光谱相机、电控移动平台(或传送带)、计算机及控制软件等部件。光源照射在放置于电控移动平台(或传送带)上的待测物体,样品的反射光通过镜头被高光谱相机捕获,得到一维的影像以及光谱信息。

  • 产品型号:1602
  • 厂商性质:经销商
  • 更新时间:2025-08-18
  • 访  问  量:75

详细介绍

品牌其他品牌应用领域环保,生物产业,制药/生物制药,综合
  • 高光谱分选机

  • 高光谱分选机工作原理高光谱分选机通常配备光源、高光谱相机、电控移动平台(或传送带)、计算机及控制软件等部件。光源照射在放置于电控移动平台(或传送带)上的待测物体,样品的反射光通过镜头被高光谱相机捕获,得到一维的影像以及光谱信息。随着样品的连续运行,可获得连续的一维影像以及实时的光谱信息,这些数据被计算机软件记录,形成包含影像信息和光谱信息的三维数据立方体。通过对数据的分析,获取物品分级、分选所需的信息,再由后续的控制机构实现对物品的全自动化分选。

  • 高光谱分选机

  • 高光谱分选机技术特点

    • 光谱范围广:一些高光谱分选机可覆盖 350nm-2500nm 全波段光谱范围,能获取更全面的光谱信息,从而更准确地识别不同物质。

    • 识别精度高:每种物质都有的光谱特征,高光谱分选机通过分析这些特征,可实现高精度的识别和分类。例如在农产品分选中,可将糖度检测误差控制在 ±0.5°Brix 以内,还能识别出 98% 的早期霉心病果。

    • 非接触式检测:采用光学成像技术,无需直接接触物体,不会对物体造成损伤,适用于各种材质和形状的物体检测。

    • 速度快:部分高光谱分选机能够满足高速流水线的生产需求,如华特磁电近红外高光谱智能传感分选机,从传感器扫描到最终决定是否改变矿块运动轨迹,只需几毫秒。


    • 高光谱分选机

  • 应用领域:

    • 农业领域:可用于果蔬的品质分级,如检测果蔬的糖酸度、水分、内部病变等;还可用于中药材的产地与炮制工艺差异区分,助力中药标准化生产。

    • 工业领域:在矿产行业,能实现 “边开采边分选",提高矿物相识别准确率;在废旧金属回收中,可区分铝合金中的镁、硅含量,提升再生铝纯度;对于塑料分选,可识别多种塑料的分子振动特征,提高分选纯度。

    • 食品安全领域:可在食品加工环节检测异物或污染物,如识别肉类中的骨头残留,还可用于农药残留检测、黄曲霉毒素污染检测等,构建食品安全 “光谱防火墙"。

                 


高光谱分选机案例:


使用高光谱技术区分真假甘草的可行性分析报告

实验结论

1.  使用高光谱数据建模训练后 , 能准确区分真假甘草

2.  对于单个光谱模型识别的准确能达到 80% 以上 , 对于单个样本 , 通过适当的后处理能做到100% 识别准确率

3.  由于现阶段实验样本, 模型能力任有较大的提升空间


实验过程


数据采集

采集方式

使用 400 ~ 1000 纳米波段高光谱相机分别采集多组数据 , 并对所有数据进行 FFC 校正 和暗电流校正 , 目的是去除传感器暗电流噪声以及消除不同位置光照条件不一致导致的光谱差异 , 保存采集到的反射率数据 .



数据集预览



预览图

标签图:C1- 真 ,C2 假

遮罩:绿色为真 ,红色为假

训练集01

高光谱分选机

高光谱分选机

高光谱分选机

验证集01

高光谱分选机

高光谱分选机

高光谱分选机

验证集02

高光谱分选机

高光谱分选机

高光谱分选机

高光谱分选机




原始光谱分析

真甘草(C1)和假甘草(C2)的原始平均光谱图像


高光谱分选机

根据该图像可以看出 , C1 和C2 两条光谱之间存在较大差异

数据预处理

为了进一步消除噪声 , 消除位置影响 , 提升特征显著性 , 我们实验了多种预处理方法的组合 , 最终选用的预处理方式 SGD1+ SNV 对原始进行处理 . 预处理后的 C1 和C2 数据如下图所⽰ :


高光谱分选机


特征分析

根据波段和分组的相关性分析 , 获得分组相关性最高的前 50 个波段位于下图中红色矩形区域

高光谱分选机


相关性最高的前 50 个 波段的 PCA 图像

高光谱分选机

依据以上条件我们可以认为 : 真甘草(C1)和假甘草(C2) 光谱数据在 628.02nm 到731.77nm之间存在较为明显的差异

模型训练

模型采用我们自有的针对高光谱数据研发的深度学习模型架构 , 更容易捕获特征与标签之间的非线性关系 .

训练数据使用上文中的训练集01, 训练 20 个 Epoch, 每个 Epoch 结束后使用验证集进行一次评估

训练过程中损失下降情况如下图所⽰ :


高光谱分选机

训练后在训练集上的推理结果 :

高光谱分选机

对比基线模型(KNN)准确率 :



评估结果

验证集01

高光谱分选机

验证集02

高光谱分选机

高光谱分选机

模型验证结果

•   对比训练集 , 模型能力有所下降 , 但准确率依然高于基线模型 10% ~ 20%

•   模型能力下降的主要原因是训练样本不够 , 使用更多样本进行训练可以有效提升模型泛化能⼒

•   经过后处理 , 即 : 在空间维度对标签做平滑处理 + 对单个样本使用置信度 (样本中标记为真的光谱数量 / 样本中所有光谱的数量) > 0.8 ,可以实现对验证集中样本识别做到 100% 准确率。

火腿产地溯源分析


实验目的


使用 900 - 1700nm 高光谱数据区分不同种类的火腿


实验过程


数据采集


使用 900 - 1700nm 高光谱相机, 采集三种火腿样本的光谱数据. 三种火腿样本分别为: XW(宣威火腿), PX(盘县火腿), WN(威宁火腿)

采集环境: 使用卤素灯光源, 在暗箱环境中采集, 排除外部环境干扰


积分时间: 20 毫秒


采集数量: 每 2 片相同种类的样本为一组, 每张图像放 3 组不同的种类, 共采集 4 张图像


数据标注


文件名

标注情况














混 01


高光谱分选机













混 02




高光谱分选机
















混 03




高光谱分选机













混 04




高光谱分选机



预处理算法


Savitzky-Golay 滤波: 减小噪声影响


一阶导数: 放大差异, 减轻信号偏移


PCA


高光谱分选机





数据划分


训练集

混 01(90%), 混 02(90%), 混 03(90%)

验证集

混 01(10%), 混 02(10%), 混 03(10%)

测试集

混 04

训练过程


超参数选择


.    epoch = 10


.    lr = 8e-5


.    batch size = 1024


损失和验证集准确率


高光谱分选机


模型验证


使用未参与训练的光谱文件 "混 04", 验证模型效果


高光谱分选机


左侧为标注数据, 右侧为模型推理数据, 准确率在 97.3%

高光谱技术无损识别可可豆产地

使用训练数据集建模

训练数据集打标

高光谱分选机

训练集数据预处理

高光谱分选机

训练模型

高光谱分选机

模型训练完成后保存

先使用训练集做模型准确率验证

准确率达到98%

高光谱分选机

验证模型准确率

使用验证数据集1进行验证

对验证数据集1打标

下面右图为提前拍好的每克可可豆的编号,一个编号对应一个产地,

分别为:1-厄瓜多尔;2-乌干达;3-海南岛;4-塔桑尼亚

高光谱分选机 高光谱分选机

验证数据集1验证

准确率达82%


高光谱分选机


使用验证数据集2进行验证

对验证数据集2打标

高光谱分选机 高光谱分选机

验证数据集2验证

准确率达84%



高光谱分选机



根据验证数据集1和2的验证结果,现有模型的识别准确率可以达到80%。

由于目前的训练集数据较少,准确率不是很高,若训练集数据足够多,模型准确率会更高一些。

高光谱分选机



以象科技作为一家由西安光机所光学博士团队、行业*专家、光谱软件算法团队以及光学应用博士等多元专业力量共同发起创立的科技型企业,在光学技术领域展现出了非凡的潜力与强劲的实力,正逐步成为行业内的一颗璀璨新星。

其团队成员凭借深厚的学术造诣与丰富的实践经验,构建起了一座坚实的技术堡垒。西安光机所光学博士团队深入钻研光学核心原理,在光学系统的设计、优化以及创新方面持续发力,致力于打造出具有性能与高精度的光学基础架构。行业*专家则犹如敏锐的市场领航员,他们凭借对行业发展脉络的精准把握以及对市场需求变化的前瞻性洞察,为公司的产品战略布局指明方向,确保每一款产品都能精准对接市场痛点,在激烈的市场竞争中脱颖而出。光学应用博士则专注于探索光学技术在各个实际领域的落地应用,他们深入挖掘产品在不同场景下的潜在用途,从生物医学到工业制造,从环境监测到农业科技,不断拓展产品的应用边界,让光学技术真正造福于人类社会的各个角落。

在产品层面,以象科技目前已成功投产并推向市场的可见光、近红外、短波中红外高光谱相机,无疑是其技术实力的集中体现。这不仅为国内相关行业提供了更为可靠、性价比更高的光学设备选择,还在一定程度上推动了我国光学技术自主创新的进程,提升了我国在全球光学产业价值链中的地位。

此外,公司经营的激光共聚焦、激光散斑血流成像仪、光谱仪等光学产品,也均在各自的领域内展现出了的优势与性能。激光共聚焦以其超高的分辨率和清晰的成像效果,在生物医学微观成像领域成为科研人员探索生命奥秘的得力助手;激光散斑血流成像仪能够精准地监测微循环血流变化,为医学临床诊断和疾病研究提供了重要的参考依据;光谱仪则凭借其对物质光谱特性的精确分析能力,在材料成分分析、环境污染物监测以及食品安全检测等领域发挥着作用。

以象科技秉持着集研发、生产、销售于一体的全产业链运营模式,展现出了强大的综合实力与协同效应。其研发中心坐落于西安这充满科技活力与创新氛围的城市,依托当地丰富的科研资源与人才优势,持续不断地投入大量资源进行技术研发与创新,为公司的产品迭代升级和技术突破提供了源源不断的动力源泉。

与此同时,公司精心构建的销售网络如同一张紧密交织的大网,全面覆盖全国各个地区,确保了产品能够快速、高效地触达每一位客户手中。而完善的售后服务机构则像是一位贴心的守护者,随时为客户提供多层次的技术支持与售后服务保障,让客户在使用产品的过程中无后顾之忧,进一步增强了客户对公司品牌的信任度与忠诚度。

以象科技凭借其团队、创新的产品以及完善的运营模式,在光学技术领域正稳步前行,未来有望在国内乃至全球市场上取得更为辉煌的成就,为推动光学科技的进步与应用普及做出更多的贡献。

以象科技由西安光机所光学博士团队,行业*专家,光谱软件算法团队,光学应用博士等相关人员共同发起成立的科技型公司,目前投产市场可见光、近红外、短波中红外高光谱相机,实现国产化,突破进口技术壁垒,打破进口短波红外高光谱相机的技术限制。

以象科技是一家集研发、生产、销售于一体的科技型公司。目前经营产品有激光共聚焦,激光散斑血流成像仪,光谱仪,高光谱相机等光学产品。研发中心设立于西安,销售网络、完善售后服务机构设立覆盖全国。

以象科技作为一家由西安光机所光学博士团队、行业*专家、光谱软件算法团队以及光学应用博士等多元专业力量共同发起创立的科技型企业,在光学技术领域展现出了非凡的潜力与强劲的实力,正逐步成为行业内的一颗璀璨新星。

其团队成员凭借深厚的学术造诣与丰富的实践经验,构建起了一座坚实的技术堡垒。西安光机所光学博士团队深入钻研光学核心原理,在光学系统的设计、优化以及创新方面持续发力,致力于打造出具有性能与高精度的光学基础架构。行业*专家则犹如敏锐的市场领航员,他们凭借对行业发展脉络的精准把握以及对市场需求变化的前瞻性洞察,为公司的产品战略布局指明方向,确保每一款产品都能精准对接市场痛点,在激烈的市场竞争中脱颖而出。光学应用博士则专注于探索光学技术在各个实际领域的落地应用,他们深入挖掘产品在不同场景下的潜在用途,从生物医学到工业制造,从环境监测到农业科技,不断拓展产品的应用边界,让光学技术真正造福于人类社会的各个角落。

在产品层面,以象科技目前已成功投产并推向市场的可见光、近红外、短波中红外高光谱相机,无疑是其技术实力的集中体现。这不仅为国内相关行业提供了更为可靠、性价比更高的光学设备选择,还在一定程度上推动了我国光学技术自主创新的进程,提升了我国在全球光学产业价值链中的地位。

此外,公司经营的激光共聚焦、激光散斑血流成像仪、光谱仪等光学产品,也均在各自的领域内展现出了的优势与性能。激光共聚焦以其超高的分辨率和清晰的成像效果,在生物医学微观成像领域成为科研人员探索生命奥秘的得力助手;激光散斑血流成像仪能够精准地监测微循环血流变化,为医学临床诊断和疾病研究提供了重要的参考依据;光谱仪则凭借其对物质光谱特性的精确分析能力,在材料成分分析、环境污染物监测以及食品安全检测等领域发挥着作用。

以象科技秉持着集研发、生产、销售于一体的全产业链运营模式,展现出了强大的综合实力与协同效应。其研发中心坐落于西安这充满科技活力与创新氛围的城市,依托当地丰富的科研资源与人才优势,持续不断地投入大量资源进行技术研发与创新,为公司的产品迭代升级和技术突破提供了源源不断的动力源泉。

与此同时,公司精心构建的销售网络如同一张紧密交织的大网,全面覆盖全国各个地区,确保了产品能够快速、高效地触达每一位客户手中。而完善的售后服务机构则像是一位贴心的守护者,随时为客户提供多层次的技术支持与售后服务保障,让客户在使用产品的过程中无后顾之忧,进一步增强了客户对公司品牌的信任度与忠诚度。

以象科技凭借其团队、创新的产品以及完善的运营模式,在光学技术领域正稳步前行,未来有望在国内乃至全球市场上取得更为辉煌的成就,为推动光学科技的进步与应用普及做出更多的贡献。




产品咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
浙江以象科技有限公司
地址:浙江省海宁市栋梁路73号
邮箱:510433896@qq.com
关注我们
欢迎您关注我们的微信公众号了解更多信息:
欢迎您关注我们的微信公众号
了解更多信息